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This paper describes a direct numerical method for solving three nucleon bound 
state problems. The method has been tried out and developed on a sequence of two and 
three nucleon problems of increasing difficulty. This work forms part of an attack on 
the problem of calculating the triton binding energy with the nucleon-nucleon inter- 
action described by the Hamada-Johnston potential. The method uses the analysis of 
Derrick and Blatt which reduces Schrodinger’s equation for the ground state of the 
triton to an eigenvalue-eigenfunction problem consisting of a set of linked partial 
differential equations in three variables. In the main calculation described the full three 
nucleon ground state problem is simplified in two respects. Firstly, the spin orbit forces 
are omitted from the potential leaving only central and tensor forces. Secondly, in the 
expansion of the ground state wavefunction in terms of states of definite total angular 
momentum, iso-spin, and parity, only nine of the 16 components are included resulting 
in a problem involving nine partial-differential equations. A direct numerical approach 
is employed in which functions of three variables are represented by three-dimensional 
tables of numbers and derivatives by finite-difference operators. The numerical problem 
is thus obtained in the form of an eigenvaiue-eigenvector problem. It is solved on a se- 
quence of mesh sizes and an approximation to the analytic binding energy obtained by 
extrapolating to zero mesh size. 

1. INTRODUCTION AND OUTLINE 

An outstanding problem in nuclear physics is calculating the binding energy of 
the triton (a nucleus containing two neutrons and a proton), i.e., calculating how 
much energy is needed to effect an infinite separation of the three nuclear particles 
or nucleons. Three nucleon calculations may be useful in clarifying uncertainties 
in potentials representing the internucleon force and in deciding the importance of 
three body forces and relativistic effects [l-3]. Regarded as a test of a two-nucleon 
potential, a calculation of the triton binding energy is however ambiguous in that 
it is unclear whether any discrepancy found between the calculated binding energy 
and the experimental binding energy (-8.48 MeV) should be attributed to defects 
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in the potential or else to the effects of three body forces and relativity which are of 
uncertain magnitude and may be as large as 2 MeV [3]. In addition to ambiguities 
of this kind there are also ambiguities due to approximations of uncertain magni- 
tude made in the calculations. The work described here was motivated by the 
desire to perform a calculation with a realistic potential that was free of the latter 
type of ambiguity. That this type of ambiguity is present in existing calculations 
with realistic potentials is clearly shown by recent triton binding energy results for 
the Reid potential [4] obtained with variational methods or methods based on the 
Faddeev equations [5-131. 

In a recent review of current binding energy results for the Reid potential, 
Levinger favors a result of 7.1 MeV but finds it hard to estimate the uncertainty 
[38]. In the case of the Hamada-Johnston potential [14] two results have been 
obtained using variational methods: Delves et al. [15] found a binding energy of 
-6.5 MeV with an estimate of the accuracy of the calculation of f0.2 MeV, and 
Chi-yu Hu [16] found a binding energy of -6.7 MeV (with no estimate of the 
accuracy reported). 

The method described in this paper is based on a direct finite-difference represen- 
tation of Schrodinger’s wave equation for the triton, whereby the hamiltonian 
operator is represented by a large (but sparse) finite matrix, whose dimension 
depends on the mesh size h. The problem of determining the binding energy 
becomes that of determining the appropriate eigenvalue of this matrix. The eigen- 
value is a function of h and by determining it for a number of values of h an 
improved estimate of the binding energy may be made by extrapolation to h = 0. 
This method has been tried out on a series of problems of increasing difficulty 
[17, 181: the ground state of the deuteron with firstly an exponential potential well 
with hard core and with secondly the Hamada-Johnston potential; and the ground 
state of the triton with firstly a central potential with hard core proposed by 
Ohmura [ 191 (henceforward referred to as “the S state problem”) and with secondly 
the Hamada-Johnston potential with the central and tensor forces included but 
with the spin-orbit forces excluded (henceforward referred to as the “central and 
tensor problem”). The accuracy obtained for the binding energy in these problems 
is about six, four, five, and one figure, respectively. The application of the method 
to the full triton problem including spin-orbit forces in the Hamada-Johnston 
potential met with difficulties that have not all been overcome [20]. Nevertheless, 
the results of this paper indicate that direct methods are feasible for three nucleon 
problems and that the pessimism sometimes expressed about direct methods is 
unwarranted [21]. The S state calculation demonstrates that results of high accuracy 
can be obtained. The central and tensor calculation demonstrates that for a 
problem having the magnitude and complexity of the realistic problem including 
spin-orbit forces, one can obtain a result of sufficient accuracy to warrant com- 
parison with other methods. 
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A. The Derrick-Blatt Analysis 

Before adopting a finite-difference representation, the triton wave equation is 
reduced to a set of linked partial-differential equations in three variables by using 
the analysis of Derrick and Blatt. The wave equation may be written in Cartesian 
coordinates in the form 

K-~“P~>(VI~ + V22 + Vs2) + V,, + V,, + VI21 Y = EY’. (1) 

The fundamental eigenvalue E is the binding energy of the nucleus. The wave- 
function !P is a function of nine Cartesian coordinates as well as the spins and 
isospins of the individual particles. Vi2 is the Laplacian in three Cartesian 
coordinates belonging to the ith particle. -(&2/2M)(V12 + Vz2 + Vs2) is the 
kinetic energy operator, Vij is the potential energy of interaction of particles i and j. 
In the case of the Hamada-Johnston potential (Section 2C) Vii includes central 
forces as well as noncentral forces of tensor, spin-orbit, and quadratic spin-orbit 
type. The spin-orbit forces are excluded in the central and tensor calculation. The 
operator on the left of (1) is symmetric under the following operations: translation, 
rotation in ordinary space and in charge (isospin) space, inversion, permutation of 
particles, and hermitian conjugation. These symmetries are used to reduce (1) and 
are preserved in the numerical representation. The Derrick-Blatt analysis [22-241 
shows that in the presence of noncentral forces the triton ground state wavefunction 
is composed of four spectroscopic components 2S1,2 , 2Pli2 , 4Pl12, and 4D,,2, 
comprising sixteen states Y, of total angular momentum J = +, parity r = +, and 
total isospin T = 4, as shown in Table I. 

The Y, are simultaneously eigenfunctions of the square of the orbital angular 
momentum, L2, the square of the spin, S2, and have well-defined symmetry with 
respect to permutations. Three types of permutation symmetry occur, 
corresponding to the three irreducible representations of the permutation group 
on three objects [25]: symmetric functions Y, , antisymmetric functions Y, , and 
pairs of functions of mixed symmetry (Y”, , Ymz). Under the action of the permuta- 
tion operator P23 interchanging particles 2 and 3, for example, these functions 
transform as 

p,,ys= ys, 

p,,ya= -ya, 

P,,Y,, = -+ Yml + &31/2Ymz ) 
(2) 

p23Kn2 = :31/2y,, + ?$Y,, . 

Two sets of D states have been defined by Derrick, an irregular and orthogonal 
set [22] and a regular and nonorthogonal set [24], and for the present calculation 
the latter set (shown in Table I) is chosen for reasons to be explained below (Section 
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TABLE I 

Classification of Triton Wavefunctions Using the Regular 
and Nonorthogonal D States of [24] 

State 
Spectroscopic number Permutation symmetry 

classification I L s YE fi 

1 
2 

3 
4 

5 
6 

7 

8 
9 

10 

11 
12 
13 
14 

15 
16 

0 
0 

0 
0 

1 
1 

1 
1 
1 
1 

2 
2 
2 
2 

2 
2 

112 
112 
112 
112 

l/2 
112 

312 
3/2 
312 
312 

312 
312 
312 
312 
312 
312 

a 

s 

ml 

m2 

a 

s 

ml 
m 
ml 
m2 

ml 
m 

s 
a 

ml 
m 

s 

a 

-4 

ml 

S 

a 

-m2 
ml 

-m2 
ml 

-m2 
ml 

a 

S 

-m 
ml 

2A). Not all of the 16 states shown in Table I are equally important and in the 
central and tensor calculation the symmetric 5’ state and all the P states are omitted 
altogether, (i.e., state 2 and states 5 to lo), thereby reducing the overall computing 
time by about a factor of three. The arguments of [3, p. 5011 as well as the calcula- 
tions of [3, p. 5051 suggest that this omission has only a small effect on the eigen- 
value. However our reason for omitting these states was to provide a trial problem 
of intermediate complexity which can be solved unambiguously and accurately. As 
a result of this omission there are nine remaining states in the expansion of the 
ground state wave function: 

y = @ i .fi(r,, , r31 , r12> YZ 
kl 

(Euler angles, spin, isospin), (3) 

where Q, is a function of the center of mass coordinates and where 1 is redefined so 
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that f = 1, 2,..., 9 includes states 1,3,4, 11-16 of Table I. In this expansion the six 
remaining coordinates after separation of center of mass coordinates are taken to 
be three interparticle distances r2a, r,, , and r12 and three Euler angle coordinates 
defining the orientation of the triangle in space. This expansion separates the known 
dependence of the wavefunction on the spin, isospin, and Euler angles from the 
unknown dependence on the interparticle distances. (The Y, representing the 
regular and nonorthogonal D states also have a certain prescribed dependence on 
interparticle distances not indicated in (3).) By substituting (3) into (I), integrating 
over angles, and summing over spins and isospins, a set of nine linked partial- 
differential equations in three inter-particle distances is obtained in the form 

H# = Epl’@. (4) 

For the present calculation this equation has been transformed to three new 
variables u1 , u2 , and ua (Section 2A) defining the unit cube of Fig. 1. The wave- 

Ul 

FIG. 1. Unit cube configuration space of the triton problem in u coordinates. The origin 0 
corresponds to coincidence of the three particles. The skirting boards are the plane surfaces of 
the hard core region. 

function # is a nine component vector whose elements fi , I = 1,2,..., 9, are the 
expansion coefficients of the ground state, and are functions of the u, , r = 1, 2, 3. 
The permutation symmetry of thefZ is conjugate to that of the Yr so that the ground 
state Y is antisymmetric in agreement with Pauli’s principle. H, the hamiltonian, 
is a 9 x 9 real hermitian matrix acting on the fr whose elements consist of func- 
tions of the u, as well as linear differential operators of first and second order 
(Section 2). p is a positive definite function of the U, and N a positive semidehnite 
symmetric matrix whose matrix elements are functions of the u,. . (Nis a normaliza- 
tion matrix that is present because of the choice of the regular and nonorthogonal 



APPROACH TO THREE NUCLEON PROBLEMS 39 

set of D states.) In the S state problem, (4) simplifies to a single equation of the 
form 

where the g,, are functions of the u, defined in Appendix A and the V,., are func- 
tions of the u, defined in [17]. 

B. The Numerical Approach 

A direct numerical approach is used to solve equations (4) and (5). A simple 
cubic lattice of mesh points is introduced into the unit cube of u space thereby 
preserving the symmetry with respect to permutations of particles. Functions of 
three variables are represented by three-dimensional tables of numbers. The 
choice of finite-difference operators replacing derivatives is made so that the 
resulting finite-difference matrix is transpose-symmetric (this symmetry being the 
numerical analog of the hermitian symmetry of the analytic operator) and so that 
differentiation is validly represented near the boundaries of the cube. It did not 
seem possible to meet these requirements, which were felt to be important for 
successful extrapolation (Section lC), with other than first-order finite-difference 
operators. (Nevertheless, Winter and McKay [26] seem to obtain successful 
extrapolation using higher-order finite-difference operators that do not preserve 
hermitian symmetry). Integration is represented by the Riemann sum including a 
factor hS for the volume element, where h is the mesh size. The eigenvalue-eigen- 
function problem (4) is thus replaced by the eigenvalue-eigenvector problem 

fW = $W, (6) 

where the nine component eigenvector # consists of nine tables of numbers re- 
presenting theft and where H and pN are finite matrices. The choice of the trans- 
formation function defining the independent variables U, is made so that even on a 
coarse mesh the overall shapes of theft are effectively seen. In this respect and also 
in respect of the preservation of rotational, permutation, and hermitian symmetries, 
(6) is expected to be a good numerical model of the analytical problem. Equation 
(6) is solved iteratively on a sequence of meshes of decreasing size for the funda- 
mental eigenvalue h = h(h) and corresponding eigenvector. The sequence of eigen- 
values is obtained to high accuracy so as to provide a firm basis for high-order 
extrapolation to the limit of zero mesh size. 

Several authors have applied finite-difference techniques to Schrodinger’s 
equation for various systems obtaining the problem in the form of an eigenvalue- 
eigenvector problem [l 1,261. In the three nucleon problem finite-difference 
techniques have been used by Laverne and Gignoux [I I] who reduce the problem 
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TABLE II 

Eigenvalues h as a Function of Mesh Size h for the Central and Tensor problem, Eqs. (4) and (6), 
with Table of Extrapolations of h to h =0, Indicating Convergence to a Limit Between4 and 5 MeV 

h A (MeV) 

l/l5 18.28227 

-0.18041 

l/20 13.66660 4.90219 

1.85262 4.13373 

l/25 11.30380 4.51796 4.38826 

2.74107 4.27918 

l/30 9.87668 4.41563 

3.21951 

l/35 8.92566 

TABLE III 

Eigenvalues h as a Function of Mesh Size h for the S State Problem, Eq. (5), with Table of 
Extrapolations of X to h = 0, Converging on about 7.8326 MeV 

h X (MeV) 

l/16 18.46748395 

4.8378665 

l/24 13.92427815 8.2655370 

6.5517018 7.779243 

l/32 12.08113405 7.9737610 7.83879 

7.1205255 7.818944 7.83248 

l/40 11.08901233 7.8963528 7.83429 7.83261 

7.3791346 7.827711 7.83258 

l/48 10.47069937 7.8669349 7.83322 

7.5185061 7.830464 

l/56 10.04895747 7.8532586 

7.6021942 

1/a 9.743112067 
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TABLE IV 

Eigenvalues X as a Function of Mesh Size h for the Deuteron with HJ Potential, with Table of 
Extrapolations of h to Ir = 0, Converging on about 2.269 MeV” 

l/16 6.094754215 
1.56272643 

l/32 3.828740326 2.2858115 
2.04478315 2.276299 

l/48 3.234087935 2.2786775 2.26824 
2.16173036 2.269856 2.26903 

1164 2.965998542 2.2733849 2.26890 
2.20639220 2.269223 

l/80 2.814077275 2.2713040 
2.22802949 

l/96 2.716402645 

a The numerical problem is a finite-difference representation of Schrodinger’s equation which 
reduces to a pair of coupled differential equations [40]. 

TABLE V 

Eigenvalues r\ as a Function of Mesh Size h for the Two Particle Exponential Well Problem 
with Hard Core, with Table of Extrapolations of X to h = 0 Converging on about 8.44495 MeV” 

l/16 10.36664066 
8.29773807 

l/24 9.67700646 
8.37019882 

l/32 9.35030455 
8.39962687 

l/40 9.16016902 
8.41452225 

l/48 9.03589456 
8.42310975 

l/56 8.94835387 
8.42851187 

l/64 8.88337362 

8.44265957 
8.4445085 

8.44376895 8.4450312 
8.4448570 8.444972 

8.44431300 8.4449890 8.444954 
8.4449324 8.444958 

8.44457849 8.4449697 
8.4449511 

8.44471823 

a The numerical problem represents Schrodinger’s equation, which reduces to an ordinary 
differential equation [40]. 
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to a finite set of coupled two-dimensional partial integro-differential equations by 
making a partial wave expansion of the Faddeev equations in configuration space 
and by omitting all two nucleon angular momentum states except for a few low 
lying states in which the nucleon-nucleon interaction is known to be significant. 
This truncation introduces a kind of ambiguity into their calculation which is 
absent from ours. Their numerical approach to the equations using inverse iteration 
(Section 1E) and successive overrelaxation (Section IF) is similar to our approach 
but seems to be less sophisticated. The quoted numerical accuracy of their result 
(about three figures) lacks supporting evidence such as the extrapolation table 
which we provide. 

The direct application of finite-difference techniques to Schrbdinger’s equation 
for the three nucleon problem as described in this paper seems to be new. 

C. The Results 

The binding energy results for the two and three particle problems are shown in 
Tables II to V. The first columns of the tables contain the eigenvalues h(h). Succes- 
sive columns are generated by eliminating successive powers of h from the error 
h(h) - h(O), assuming that h(h) may be expanded in a power series in h (Section 4A). 
Thus in column two the leading (linear) term in the error is eliminated and in 
column three the quadratic term, and so on. The lowest line of a table contains the 
most accurate estimates of the analytic eigenvalue since these pertain to the finest 
mesh sizes, and among these the accuracy increases in traveling from left to right 
across the tables. In the S state and deuteron problems the convergence is very 
rapid resulting in binding energies of 7.8326 MeV [17], 8.44496 MeV, and 
2.269 MeV [17], respectively, with five, six, and four figures accuracy. These results 
may be compared, respectively, with 7.96 i 0.14 MeV [27] and 7.82 MeV [28] 
found variationally, 8.44496 MeV [29] found analytically, and 2.269 MeV [4]. In 
the central and tensor problem the binding energy, between 4 and 5 MeV [18], has 
only about one figure accuracy. This result is sufficiently accurate to indicate a 
discrepancy with Chi-yu Hu’s variational result of 2.8 MeV [16], and its accuracy 
could be improved, at the expense of extra computing time, by calculating finer 
mesh eigenvalues. 

The technique of extrapolation using Padt approximations [41] was tried out but 
found to offer no improvement in accuracy. 

D. Testing the Analysis 

The complexity of the problem makes it essential to test for algebraic errors and 
errors of transcription made in setting up the numerical representation and in 
writing the program. A searching test of the numerical analysis and also, indirectly, 



APPROACH TO THREE NUCLEON PROBLEMS 43 

of the analysis of Derrick and Blatt was made using a method described fully in 
[20]. In the test the result of the three nucleon hamiltonian acting on a wavefunc- 
tion is worked out in two independent ways and compared. An analytic result is 
obtained directly by substituting into the left-hand side of (1) a three nucleon 
wavefunction having the quantum numbers appropriate to the ground state and 
having the product form appropriate to the case where the Hamada-Johnston 
potential is switched on between only two of the three nucleons. Since, in this case, 
the hamiltonian operator separates into the sum of a two particle hamiltonian and 
a free particle hamiltonian, its action on the product wavefunction is easily worked 
out using Schrodinger’s equation for the deuteron [14]. An accurate numerical 
result can be obtained for comparison by expanding the product wavefunction in 
terms of the Y, as in (3), by using the methods of [31] to determine the associated 
expansion coefficientsf, explicitly, by substituting thesef, into the left-hand side of 
(6) and by extrapolating the result of this on a sequence of mesh sizes. Individual 
parts of the hamiltonian, kinetic energy, and central, tensor and spin-orbit poten- 
tial energy, were tested in this way by setting the other parts to zero. Individual 
spin and parity terms in the potential were tested by taking the two particle wave- 
function in the different spin and parity states. Agreement between analytic and 
numerical results was obtained to high accuracy in every case. An independent and 
direct test of the transpose symmetry of H was made by comparing the scalar 
product of #1 and H#, with the scalar product of & and Hz/& for various choices 
of A and A ; and of the permutation symmetry by comparing the expectation 
values of V,, + V,, + V,, with 3 VIZ . 

E. Inverse Iteration 

The basic method used for solving (6) is “inverse iteration,” that is 

(H - X’pN) &+I = PWJ~ 9 (7) 

where x’ is an approximation to the fundamental eigenvalue X = X(h) and I& is an 
approximation to the corresponding eigenvector. An improved approximation to 
h is then given by the Rayleigh quotient 

in which the symmetry of H and pN guarantees that X,,, is an upper bound on X 
and approximates h with an error that is quadratic in the error in $,+1 . If x’ is 
sufficiently close to h then h, converges to h and if x’ is set equal to X, in (7) then 
the convergence is very rapid, the number of significant figures trebling at each 
iteration [32]. 
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F. Successive Overrelaxation 

The representation of the numerical problem is restricted to internal mesh 
points outside the hard core (Fig. 1). The permutation symmetry of the problem is 
used to further restrict the problem to mesh points within one of the six tetrahedra 
making up the cube. The number of inhomogeneous equations represented by (7) 
is accordingly about equal to 9 x (M - 1)3/6, where M = h-l. These equations 
are solved iteratively by successive overrelaxation by lines [33]. Successive over- 
relaxation by lines for the symmetric matrix H - h’pN converges if the matrix is 
positive definite, i.e., if h’ is taken less than the fundamental eigenvalue h (Section 
5A). The coefficient data connected with the solution of these equations is reduced 
by about a half by using the transpose symmetry of H. The detailed logic involved 
in programming the permutation and transpose symmetry reductions of the 
numerical problem was tested directly using a relation based on the defining equa- 
tions of successive overrelaxation (Section 5A). 

G. Combining Inverse Iteration and Successive Overrelaxation 

The overall scheme thus involves two levels of iteration: an outer level of inverse 
iteration and an inner level of successive overrelaxation. Tables VI and VII illustrate 

TABLE VI 

Information and Output Connected with Computations on h = GZ in the S State Problem 
(Table III) Indicating Convergence of Successive Outer Iterations” 

X’(RHS # 0) 

n k, RHS X,&&=0) AI Qn Rn2/1 lob A, - X6 Y,C 

0 o- - -11.81 -24.02 0.40(l)” 0.21(l) - 
1 13 #O - 15.223 -13.493 -16.681 0.90(O) 0.43(O) - 
2 32 #O - 15.223 - 13.9082 - 13.9832 0.18(-l) 0.16(-l) - 
3 21 0 AZ - 13.92305 - 13.92879 0.13(-2) 0.12(-2) - 
4 17 0 A, - 13.92427645 - 13.9242832 0.17(-S) 0.17(-5) l/30 
5 35 0 4 -13.924278152d - 13.924278154 0.40(-9) 0.0 l/l5 

4 Both the nonzero RHS procedure, Eqs. (7) (see footnotef), (S), and (12), and the zero RHS 
procedure, Eqs. (9), (8) and (13) are used. 

* R,2 is normalized to agree with An - A5 at n = 4. 
c r, gives the reduction in the SOR difference vector norm following a successful application 

of the acceleration device (43), where Y, is the subsequent SOR ratio (42) (e.g., Y, = y(91) in 
Table XII). 

d The eigenvector corresponding to As is shown in Fig. 5. 
e Bracketed numbers are exponents of 10. 
f  In the S state problem in Eq. (7) etc. N = 1. 
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TABLE VII 

Information and Output Connected with Computations on h = $8 and h = & in the Central 
and Tensor Problem (Table II) Indicating Convergence of Successive Outer Iterations” 

n k, RHS A’ or A,-, Al Qlt R,“/65b A, - h,b r, 

0 0 - 

1 14 f0 
2 15 #O 
3 11 #O 
4 9 #O 
5 34 #O 
6 39 0 
7 37 0 
8 17 0 

0 0 - 

1 65 #O 
2 92 0 
3 124 0 

- 
-10 
-10 
-15 
-11 
-11 

-9.878 
A8 
A, 

- 
-9.00 
-8.93 
-8.9259 

Mesh size h = & 
-4.10 -77.06 
-9.19 -13.58 
-9.73 -20.42d 
-9.844 -10.406 
-9.856 -9.966 
-9.87625 -9.87798 
-9.876648 -9.876758 
-9.8766810 -9.8766885 
-9.8766822” -9.8766870 

Mesh size h = ~&g 
-8.70 -50.03 
-8.9199 -8.9375 
-8.925569 -8.925918 
-8.925666 -8.925670 

0.90(2) 0.57(l) 
0.15(l) 0.68(O) 
0.50(l)d 0.14(O) 
0.18(O) 0.33(-l) 
0.34(-l) 0.2q- 1) 
0.5q-3) 0.43(-3) 
0.34(-4) 0.34(-4) 
0.23(-5) 0.12(-5) 
0.14(-5) 0.0 

0.38(2) 0.22(O) 
0.48(-2) 0.57(-2) 
0.97(-4) 0.97(-4) 
0.83(-6) 0 

- 
- 

215 
- 
- 

l/S 
112 
- 
- 

- 
l/5 
l/4 
116 

D Using zero and nonzero RHS procedures. 
b R,= is normalized to agree with X, - A, at n = 6 rather than at n = 7, the accuracy of A, - A8 

being in doubt. For h = #% replace headings by Rm2/63 and A, - A, . 
c The symmetric S and D components of the eigenvector corresponding to A, are shown in 

Figs. 3 and 4. 
d The anomalous increase in R2 and 1 QB 1 seems to indicate that here the acceleration device 

produces an error vector & - # with reduced norm but with enhanced weight in Rz and Q, . 

the combining of these two levels in both the S state and central and tensor calcul- 
ations. The nth outer iteration is composed of a cycle of k, inner iterations genera- 
ting approximate eigenvectors 4, . w  The convergence of the overall process depends 
on the separation between the eigenvalue estimate X’ and the fundamental eigen- 
value h, a narrow separation favoring inverse iteration and a wide separation 
favoring successive overrelaxation. It was found expedient to take h’ as close to X 
as possible, in which case successive overrelaxation was found to converge slowly 
though smoothly. This permitted the use of an acceleration device which worked 
very well in the S state problem and reasonably well in the central and tensor 
problem (Section 5B). As soon as the Rayleigh quotient h, becomes sufficiently 
accurate it speeds up the convergence to replace h’ by h, and use the “zero right- 
hand side” procedure, abbreviated “zero RHS,” (Section 5C), defined by the 
homogeneous equations 
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replacing the “nonzero RHS” procedure, Eq. (7). Although H - h,pN is not 
positive definite since h, > X, nevertheless successive overrelaxation initially 
converges in this case provided the matrix is sufficiently singular, that is provided 
the error in h, is in some sense smaller than the error in #n+l . When these two 
errors become comparable convergence ceases and this is used to provide a natural 
indicator of when to terminate an inner cycle of iterations. The outer iterations are 
terminated as soon as the root mean square residual 

Rn= [ 
&,T(H - h,pN)p-lN-l(H - h,pN) I,&, 

htT~Nrbn 1 1/Z 3 (10) 
becomes sufficiently small. The proportionality between Re2 and the error in A, 
expected on theoretical grounds was found to hold in practice (as, for example, in 
Tables VI and VII), thereby confirming the accuracy of the eigenvalues quoted in 
the first columns of Tables II-V. An additional guide to the accuracy of the eigen- 
values is provided by the quantity 

*,THp-W-W*, l/2 
Qn = - [ $nTpN~n 1 ’ (11) 

which appears in practice to function as a lower bound on h. Although Qn can only 
be proven to be less than X, and not necessarily less than X (this follows from 
expanding the inequality Rn2 > 0) nevertheless, in cases where the convergence 
was not too slow, Qn often provided a lower bound on X of high accuracy (as, for 
example, in Tables VI and VII where the inequality h, > X > Qn is obeyed for 
each R with h, and Qn having comparable accuracy). That in practice Qn tends in 
the limit to a lower bound on X seems to indicate that the process quickly damps 
out any eigenvector components of the error #,, - $ corresponding to eigenvalues 
in the positive spectrum of H that are closer to zero than X (the absence of which 
eigenvalues would make Q, a strict lower bound). The iterations are started 
(n = 0) with eigenvalue estimates h’ obtained on coarse meshes by experimenting 
and on fme meshes by extrapolation (Section 4B) and with eigenvector estimates 
obtained on coarse meshes by representing variational solutions [19, 371 and on 
fine meshes by extrapolation (Section 4B). An extrapolated eigenvector is obtained 
from a sequence of coarse mesh eigenvectors by first interpolating (in three dimen- 
sions) approximations to the fine mesh eigenvector and then extrapolating. Starting 
vectors (k = 0) for the cycle of inner iterations belonging to the (n + 1)th outer 
iteration are given by 

in the nonzero RHS scheme, and by 

*% = &I 3 (13) 
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in the zero RHS scheme, where I,$, abbreviates #Fn’. (That I,$“$ , Eq. (12), approxi- 
mates #n+I when & approximates tj follows from (7) by replacing IJ,+~ by #$$. 

2. THE ANALYTIC PROBLEMS 

This section gives detailed descriptions of Eqs. (4) and (5). 

A. The Introduction of u Coordinates 

The choice of u coordinates replacing interparticle distances facilitates the 
numerical representation of the problem in that it simplifies the geometry of 
configuration space and eliminates the need for a cut-off in the integrations. The 
region of configuration space over which the interparticle distances are free to vary 
has rather awkward boundaries defined by the triangle conditions -rs3 + 
rsl + r12 3 0, etc. By transforming to coordinates similar to those used by Pekeris 
1341, 

x1 = -rz3 + r31 + r12 , 
x2 = rz3 - r31 + r12 , 
x3 = r23 + r31 - r12 , 

configuration space becomes an infinite cube, the triangle conditions implying 
that 0 < x, < co, r = 1,2,3. This infinite cube is reduced to the unit cube of 
Fig. 1 by means of a further transformation x, = $(u,.), where 0 < U, < 1 and 
where the “squeezing function” 4, defined in Section 4A, is a function of u 
increasing monotonically from 0 to 00. 

The numerical representation takes into account the behavior of the wave- 
function in the following special regions of configuration space. 

1. When one or more of the interparticle distances tends to infinity the 
bound state wavefunction tends to zero. This “infinity” region is represented in 
the cube by the three faces U, = 1 passing through (1, 1, 1). On these three faces 
fi = 0, 1 = 1) 2 )...) 9. 

2. When one or more of the interparticle distances is less than or equal to c, 
the hard core radius, the wavefunction vanishes. This “hard core” region is 
represented in the cube by the region containing the origin and bounded by the 
“skirting boards” x2 + x3 = 2c, etc. and here fi = 0, I = 1, 2,..., 9. The skirting 
board geometry is preserved in u coordinates by taking 4 linear between U, = 0 and 
2.4, = $-l(2c). 

3. When the three particles are in line, e.g., r23 = r31 + r12, or when the 
three particles form an equilateral triangle r 33 = r31 = r12 then the Euler angles are 
not uniquely defined and the wavefunction obeys certain asymptotic conditions. 

581/22/l-4 
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(If it did not, a neighborhood of these configurations would make an infinite 
positive contribution to the expectation value of the kinetic 
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The operators K, K, , and K5 are hermitian and symmetric with respect to permuta- 
tions, (Kl , KS) and (KS , K4) are hermitian and mixed symmetric, L is antihermitian 
and antisymmetric, and (MI , M2) are antihermitian and mixed symmetric. The 
overall hermitian property of (14) implies that an operator and its hermitian 
conjugate occur in symmetric positions with respect to the diagonal of the matrix. 
The overall permutation symmetry of (14) implies that under the permutation 
operator Pz3, for example, T transforms as 

P,,T = R,,TR;;, (16) 

where RB is a 9 x 9 permutation matrix acting on the fi and defined by equations 
similar to (2). The coefficients of derivatives involving the quantities p, g,, , I,. , 
ml,, m2?, and N, given in Appendix A are functions of the u, of well-defined 
permutation symmetry. By virtue of the following property 

I&, = 0) = 0, 
(17) 

m,,(u, = 0) = 0, 

m2r(u, = 0) = 0, 

the coefficients of derivatives vanish on the in-line faces of the cube, an important 
point for the numerical representation. 

C. The Potential Energy Operator 

The full Hamada-Johnston potential operator [ 141 may be expressed formally as 
a finite sum 

vi, = F v,o, . (18) 
?n=l 

Each term V,O, in this sum is associated with one of the four spin and parity 
states of the two nucleons i and j: triplet-even, triplet-odd, singlet-even, and 
singlet-odd, and also each term is associated with one of the four types of potential: 
central, tensor, spin-orbit, and quadratic spin-orbit (thus central triplet-even terms, 
etc.). The functions V, of the interparticle distance rij are positive and infinite 
within the hard core (rii < c = 0.485345 fm) outside of which they are steeply 
peaked monotonic functions tending rapidly to zero. The 0, and hermitian 
operators commuting with the V, and act on the spin and isospin coordinates (and 
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also, in the case of the spin-orbit terms, on the Cartesian coordinates as first- and 
second-order differential operators). In the Derrick-Blatt formalism the 0, are 
represented by matrices of operators acting on the fi . For example, the 0, asso- 
ciated with the central triplet-even potential between particles 1 and 2 is given by 
the symmetric matrix 

1 : t . 
. . . 

4 4 dl -d2 -4 
d, d4 d3 -d4 -d3 
dl da d5 -da -de 

. -d, -d, -d3 d, d3 
’ -dl -d3 -d5 d3 d5 

where the d’s are functions of the u,. defined in Appendix A. 
In (4) the hamiltonian is 

H = (-W244) T + pv,, + pf’s + pVlz, 

where K2/2M = 20.73627 MeV fm2. Vzs and Vzl are obtained from V,, by permu- 
tation symmetry. Thus V,, = R,,V12R;~ and Vsl = R,,V,,R;Y. The algebra 
involved in the matrix multiplications is done on the computer. 

3. THE FINITE-DIFFERENCE REPRESENTATION 

This section describes the numerical representation of Eqs. (4) and (5). 
A simple cubic lattice of mesh points is introduced into the unit cube of u space 

by taking M intervals of equal length h = M-I along each axis thereby preserving 
permutation symmetry. The mesh point P with indices i, j, k has u coordinates 
u1 = (i - 1) h, u2 = (j - 1) h, us = (k - 1) h and the complete lattice is generated 
by giving i, j, k the values 1 < i, j, k < A4 + 1. A functionf(u, , u, , ug) is represen- 
ted by a table of values f(i, j, k). 

In the S state problem the operator K, Eqs. (5) and (15), is represented by the 
finite-difference operator 

K = i (-r,)TPgmr,. 
r.s=l 

(20) 
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r, is a direct product of a matrix r operating on the U, subspace and unit matrices 
operating on the U, subspaces (r # s), where 

-1 1 0 0 
0 -1 1 0 *** 

r = h-1 -1 1 
-1 1 0 

. . . O-l 1 
0 0 -1, I* (21) 

The representation of the problem is restricted to internal points of the cube, and 
indeed to points outside the hard core, within and on which the wavefunction 
vanishes. The first row of r pertains to a point adjacent to an in-line face of the 
cube and the last row pertains to a point adjacent to an infinity face of the cube. 
r, is essentially the forwards-difference operator divided by h. 

wh , 24 , 4 = Mu, + 4 -f)lh> (22) 

and validly represents to first-order in h the derivative of a function vanishing at 
U, = 1 (in (22)f(u, + h) stands for f(u, + h, u2, us) if s = 1, etc.). a/224, in (5) is 
therefore validly represented by r, since the bound state wave function vanishes at 
U, = 1. Similarly 2/2u, in (5) is validly represented by the backwards-difference 
operator -r,.T at points adjacent to an in-line face since, by virtue of (17), g,, 
vanishes at u, = 0. 

K expands into a finite-difference matrix whose coefficients KPP, linking a mesh 
point P to its neighbors may be obtained by letting (20) act on a function of three 
variables. One obtains 

rTTf&m = - b&s{~(us + h) - $1 - p(ur - h) grs(u, - h) 

t#(ur - h> u, + h) - #<u, - h)}l/h2, r # s, 

= - [m&us + h) + p(us - h) g&s - h) #(us - h) 

- b%.w + P(U~ - h) g.du, - hII $llh2, r = s. 

(23) 

Summing over r and s and replacing t&u1 + h) by #(i + 1, j, k) etc. yields thirteen 
nonzero coefficients KPP* for each row of the matrix. These coefficients are presented 
in Table VIII. The set of 12 neighboring mesh points P’ in N(P) to which P is 
coupled is shown in Table VIII. 

The symmetry of K under transposition is easily established by taking the 
transpose of (20) and using g,, = g,, , r # s, which follows from the definition of 
the g,, in Appendix A. The symmetry of K under permutations is also easily 
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TABLE Vi11 
The 13 Finite-Difference Coefficients KpP, a 

Mesh point P Reference number r Coefficient Kpp, 

3 

C&j + 1, k) 2 -&a 
,=I 

(i,i, k + 1) 3 

(i - Li, k) 4 - ~g,Xi - Lj, 4 
r=1 

(i,i - Lk) 5 

(i,i, k - 1) 6 

(i,j- 1,k + I) 7 

(&i-k l,k - 1) 8 

(i - 1, j, k + 1) 9 

(i-t l,j,k- 1) 10 

(i - 1,j + 1, k) 11 

(i-k Li- I,4 12 

G, i, W 13 

3 
- c g&, i, k - 1) 

r=1 

s&j - 1, k> 

g&j, k - 1) 

gd - 1, i, k) 

g&j, k - 1) 

gdi - 1, i, k) 

g& j - 1, k) 

gdi - 1, i, k) + g&j - 1, k) + 

g&i, k - 1) + i g,, 
1,8=1 

a Whereby at a particular mesh point P(i, j, k), the result of the operator K, Eqs. (15) and (20), 
acting on a function of three variables may be represented by a linear combination of function 
values at P itself (numbered Y = 13) and at the points P’ (numbered r = 1,2,..., 12) defining the 
set J(P) of 12 neighboring points. For ease of presentation, a factor p/k* has been absorbed into 
the g,, , defined in Appendix A. 
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established. For example, applying PIz to the first coefficient of Table VIII and 
using the definitions of the p and g,, in Appendix A, one obtains 

P&(i,j, k: i +11, j,rk) = K(j, i, k: j, i + 1, k) 

~(5 i, k) 
h” 

(g& i, k) + gzz(.L i, 4 + g&, i, k)) 

= p(i, j, k> 
- 7 (gdi, j, W + g& .L 4 + g&j, 4) 

= K(i,j, k: i + l,j, k). 

The coefficients K,,* vanish when P’ lies on an in-line face. For example, if i = I, 
the coefficient linking (1, j, k) to (0, j, k) in Table VIII is -l/h2 C”,,, pg,,(O, j, k) 
which vanishes because of (17). The complete hamiltonian finite-difference matrix 
representing H, Eq. (5), is obtained by adding to -(A2/2M)K a diagonal matrix 
representing the potential. 

In the central and tensor problem the D state operators in T, Eq. (14), are 
represented similarly. For example, the antihermitian operator L is validly 
represented by 4 &1 p&r, - 4 C:=, I’,.=pl, which is antisymmetric both under 
transpositions and permutations and which defines a matrix with six nonzero 
elements per row linking the first six points of Table VIII. The complete finite- 
difference matrix Hz&P, P’), 1, m = 1, 2 ,..., 9, representing H in Eq. (19) is built up 
by selecting the operator in the (Z, m)th entry in (14) and substituting the (P’)th 
coefficient belonging to that operator, i.e., substituting Kpp, for K, Lpp, for L, etc. 
The central and tensor potentials contain no differential operators and so contribute 
only to the diagonal blocks H&P, P). The resulting matrix is symmetric under 
transposition 

H(P, P’) = (H(P’, P))‘, (24) 

where H(P, P’) is a 9 x 9 block, and is symmetric under permutations 

H(RP, RP’) = RH(P, P’) R-l. (25) 

On the left-hand side of Eq. (25) R is a permutation operator and on the right-hand 
side R is the corresponding 9 x 9 permutation matrix defined in Section 2B. 
Equation (4) is represented at each mesh point P by 

; W, P’> W”) = h(h) P(P) NJ’) WY. (26) 

where N(P) is the 9 x 9 normalization matrix [24, Eq. (3)] evaluated at P, and 
where #(P) represents the nine component eigenfunction # = (fJ by nine tables 
of values i&(P) =f,(P), 1 = 1, 2 ,..., 9. Equation (26) need only be solved at internal 
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mesh points outside the hard core. Points P’ on or within the hard core or on the 
infinity faces do not contribute as +(P’) vanishes there, and points P’ on the in-line 
faces do not contribute as H(P,‘P’) vanishes there by construction. The internal 
mesh points are ordered with i varying most rapidly, thenj, then k (2 < i < M etc). 
Fixed (j, k) may be said to represent a line of wavefunction values and fixed k a 
plane. 

H and pN are large sparse matrices. pN is positive definite and is block diagonal 
with 9 x 9 blocks. H is block 13 diagonal: the nine rows of H pertaining to the 
point P = (i,j, k) include (in general) 13 nonzero 9 x 9 blocks Hpp* coupling P 
to itself and to the twelve neighboring points P’ in N(P), Table VIII (moving 
horizontally across the matrix from left to right these blocks occur in the order 
r = 6, 10, 8, 5, 12, 4, 13, 1, 11, 2, 7, 9, 3, using the notation of Table VIII). 

4. THE EXTRAPOLATION TECHNIQUE 

This section describes how the extrapolation process works and how initial 
estimates of the eigenvalue and eigenvector suitable for starting iterations on a 
given mesh may be obtained by extrapolating solutions already obtained on coarser 
meshes. 

A. Extrapolating the Eigenvalues to Zero Mesh Size 

Tables II to V containing the eigenvalues and extrapolations to h = 0 are 
referred to as Neville tables [35]. The extrapolation process assumes that an 
analytic function 

h(h) = h(0) + vlh + v,h2 + ..., (27) 

exists whose values at the mesh sizes indicated in the tables are the corresponding 
eigenvalues entered in column one, and whose value h(0) at h = 0 is the analytic 
eigenvalue. A term linear in h associated with nonzero y1 must be included in 
accordance with the fact that the leading term in the truncation error of the 
representation (20) of the derivative is linear in h. The mesh sizes h actually 
employed may be expressed as submultiples h = h,/p of a quantity h, as, for 
example, in Table II where h, = 6 and p = 3, 4 ,..., 7. 

Successive columns of the tables after the first contain successive extrapolations. 
An entry 1 in some column is obtained from a pair of neighbouring entries h’ and 
h” in the previous column by applying the extrapolation rule 

A=(++)/(&-if-, 
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where h’ and h” are the mesh sizes of the entries in column one symmetrically 
placed with respect to A. The effect of (28) is to eliminate successive terms from the 
error h(h) - h(0) in successive columns, the linear term (proportional to h) being 
eliminated from the entries in column two, the quadratic term (proportional to h2) 
in column three, and so on. By continued application of (28), x may be 
expressed as a linear combination 

of the eigenvalues in column one that are symmetrically placed with respect to it. 
As one moves from left to right across a particular line of the table (say, the lowest) 
two factors operate simultaneously: the accuracy of the x increase as higher-order 
terms are eliminated from the truncation error, and the rounding error builds up 
as the /3 coefficients increase in magnitude (the largest t8 coefficient in Table III 
being about 1000). It is for this reason that the eigenvalues in column one are 
obtained to such high accuracy so as to provide sufficiently noise free extrapolation. 

The tables show an overall pattern of convergence. In traveling down successive 
columns the monotonic convergence of successive approximations, alternating 
between convergence from above and convergence from below, is evident in 
Tables II and III. These properties are not always found and in Tables IV and V 
the alternating property does not hold. The convergence can be spoiled if eigen- 
values from too coarse a mesh are included. For this reason the eigenvalues for 
h = +(I 11.7946) and h = 1% (30.74207) were excluded from Table II, and the 
eigenvalue for h = 4 (43.59821719) from Table III. 

The successful working of the extrapolation process depends on how well the 
analytic problem has been represented. As a guide to this we studied the overall 
shapes of # and qbTpN# which depend on the choice of the squeezing function 4. 
In the central and tensor problem CJ was taken to be the two piece function 

$(u) = $24, 0 < 24 < y, 
++s (u - Y)” I-u ’ y<u<l, 

(30) 

shown in Fig. 2. The c is the hard core radius; 4 together with its first and second 
derivatives is continuous; and the linear piece is used so as to preserve the plane 
“skirting board” geometry of the hard core region indicated in Fig. 1. There is some 
flexibility built into 4 in the free parameters y and 6. Suitable values for y and 6 
may be chosen by computing the solution on a coarse mesh and adjusting y and 6 
so that the significant features of $ and $TpNt,h are effectively seen on the coarsest 
mesh employed in the extrapolation and are also reasonably evenly distributed 
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u 

FIG. 2. The two-piece’squeezing function 4, Eq. (30), used in the central and tensor problem 
plotted at intervals of thefcoarsest mesh size h = %. 

0 u, = lJz=u3 1 

FIG. 3. Values of the symmetric S component (fi in Table I) of the eigenvector in the central 
and tensor problem pertaining to mesh sizes h = & and h = & and plotted against distance 
along the principal diagonal of the cube u1 = u2 = ua (where, for the sake of clarity, only values 
at mesh points whose coordinates are even multiples of h are plotted). The curves are normalized 
to agree at (6/M, 6/l&6/15). The main features of the wavefunction in this configuration including 
the rise from the hard core at (3/M, 3/l& 3/H) to a peak at about (6/U, 6/U, 6/15) and the falloff 
near (1, 1, 1) seem to be well represented and to be almost independent of mesh size. 
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FIG. 4. Values of the symmetric D component (fi4 in Table I) of the eigenvector in the central 
and tensor problem pertaining to h = & and h = $,, and plotted as in Fig. 3 (with the two 
curves normalized to agree at (6/l& 6/l& 6/M)). Compared with the S component of Fig. 3 the D 
component is seen to be more steeply peaked and also to be. closer to the hard core. 

over u space. These features include the rise along the principal diagonal of the 
cube from zero at the intersection of the hard core boundaries at (a~, Qr, 6,) to a 
peak at about (y, y, r) and the tailing off near (1, 1, 1). These features are clear in 
the graphs of 4 shown in Figs. 3 and 4. y was taken to be an even multiple of the 
quantity h, = 5 thus ensuring that a mesh point occurs at ($r, $r, &J) on all meshes. 
Of the two alternatives, y = + or y = 6, the latter was ruled out on the grounds 
that it gives too much attention to the hard core region and not enough to the 
infinity region corresponding to a wide separation of the particles. With y fixed, 6 
can be thought of as a cut off in configuration space which increases as l/h with 

FIG. 5. Values of the symmetric S eigenvector in the S state problem pertaining to mesh sizes 
h = & and h = & and plotted against distance along the principal diagonal of the cube. 
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decreasing mesh size. The choice 6 = 10 makes the tailing off of tfirpN# near 
(1, 1, 1) clearly visible in Fig. 6(i). 

Figure 5 shows graphs of solutions to the S state problem and indicates that the 
various features of the wavefunction have been adequately represented. The 
nonlinear part of the squeezing function used in the S state problem differed from 
(30) in having a tail proportional to u/( 1 - U) which joined smoothly onto the linear 

0 U, = IJz L_ Uj 1 

0 ul=lJ~=u3 1 

FIG. 6. (i) Values of $r pN $ in the central and tensor problem on h = & and (ii) values of 
gT p $ in the S state problem on /I = & plotted against distance along the principal diagonal 
of the cube (and, for the sake of clarity, only at even multiples of mesh size). These curves give 
some indication of whether or not the particular squeezing function employed in the calculation 
adequately represents the fall off of # near infinity at (1, 1, l), on which the success of the extra- 
polation seems to depend (Section 4A). In (i), using the two-piece squeezing function (30), the 
choice (y, 6) = (Q, 10) seems adequate (Figs. 3 and 4 and Table II). In (ii), using a three-piece 
squeezing function with a linear piece (2c/y) u and with a tail-piece u/(r(l - u)) the choice (Y, C) = 
(a, 0.7) in curve (a) is seen to be adequate (Fig. 5 and Table III); but in curve (b) the choice (7, C) = 
(4, 1.6) is definitely not adequate and leads to poor extrapolation (Table IX). 
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piece via a fifth degree polynomial. To illustrate the sensitivity of the extrapolation 
process to the choice of squeezing function we present in Table IX (to be compared 
with Table III) results obtained in the S state problem using a squeezing function 
in which the choice of parameters gave too much attention to the hard core. In 
traveling from left to right along the lowest line of Table IX the differences between 

TABLE IX 
An Extrapolation Table for the S State Problem Resulting from Calculations Using a poorer 

Squeezing Function than that used in Table III (see Section 4A) 

h X (MeV) 

l/8 

l/16 

l/24 

l/32 

l/40 

l/48 

l/56 

18.2223751 
4.2276864 

11.2250307 
6.4923809 

9.6474808 
7.2320260 

9.0436171 
7.5087329 

8.7366402 
7.6164820 

8.5499472 
7.6767436 

8.4252038 

7.624728 
8.087318 

7.971671 7.84301 
7.891875 7.62857 

7.923793 7.66431 8.02603 
7.740166 7.96925 

7.831980 7.88212 
7.821288 

7.827397 

a The failure of convergence in this case is indicated by the differences of successive entries 
in the lowest line of the table which are found to eventually increase as one moves from left to 
right. 

successive entries at first decrease but then increase, in contrast with those of 
Table III which are monotonic decreasing. The poorer squeezing function does not 
adequately represent the fall off of #=p# near infinity as is shown in Fig. 6(ii). 

The various states in the nine-state central and tensor problem peak in different 
regions of configuration space. In addition, the mixed and antisymmetric functions 
are forced by symmetry to have various nodes. All this puts a greater strain on the 
representation on a coarse mesh and it might be expected that finer meshes would 
be needed in this problem than in the S state problem, whereas in fact coarser 
meshes were used. This may account for the poorer extrapolation found in the 
central and tensor problem. 

B. Initial Values of Eigenvalues and Eigenvectors by Extrapolation 

An initial estimate of an eigenvalue on a relatively fine mesh h, may be obtained 
from the already existing table of extrapolations of coarser mesh eigenvalues to 
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h = 0. This initial estimate is an extrapolation to h = hf (rather than to h = 0). It 
is an approximation to the last entry in column one of a new extrapolation table 
whose lowest line pertains to h, . Approximations to entries in this line may be 
generated by working from right to left, using (28) in reverse. To start the reverse 
process, the entry in this line in the same column as the last entry on the right of the 
previous line is set equal to that entry. Thus, for example, an extrapolated approxi- 
mation to X(1/64) (hf = l/64) in Table III was obtained using the table of extra- 
polations to h = 0 of the eigenvalues h(&) to X(&J. The result -9.74310 has about 
five figures correct. 

In obtaining an initial estimate of the eigenvector it is assumed that an analytic 
function 

Ifrh 4 = $a 0) + h$u4 + 1f2#2(U) + ‘.., (31) 

exists whose values at the mesh points u = (ur , u2 , UJ = ((i - 1) h, (j - 1) h, 
(k - 1) h) on a particular mesh size h are equal to the values of the appropriately 
normalized eigenvector belonging to that mesh size. #(II, 0) is the normalized 
fundamental eigenfunction. The power series expansion for the eigenvector is 
analogous to that for the eigenvalue, Eq. (27). An approximation to the value 
#(II, h,) of a fine mesh eigenvector is obtained by extrapolating to h = hf the 
sequence of coarse mesh values $(u, h) corresponding to fixed u and decreasing h. 
Table X shows extrapolations (to h = 0) in the S state problem at points u restricted 

TABLE X 
Extrapolations to h = 0 in the S State Problem of Eigenvector Values $(u, h), Eq. (31), at Mesh 
Points Occurring on the Principal Diagonal of the Cube and Contained Within the Common 

Subset of Points Belonging to h = A, &,., -a, and Aa 

Mesh point Extrapolated value Variational value 

(3/16, 3116, 3/16) 0.097 
(4/16, 4/16, 4/16) 0.213 
(5116, 5/16, 5/16) 0.248 
(6116, 6/16, 6/16) 0.222 
(7/16, 7/16, 7/16) 0.173 
(S/16, 8/16, 8/16) 0.120 
(9/16, 9/16, 9/16) 0.077 
(10/16, 10/16, 10/16) 0.041 
(11/16, 11/16, 11/16) 0.016 

0.085 
0.210 
0.248 
0.222 
0.178 
0.129 
0.085 
0.046 
0.018 

5 Values of the variational wave function of [19] at the same points are presented for comparison 
(the upper bound on the analytic eigenvalue associated with this variational wavefunction, -7.5 
MeV, should be compared with the extrapolated eigenvalue found in Table III, -7.8326 MeV). 
The extrapolated and variational wavefunctions are normalized so as to agree at (5,16, 5!16, 
5/16). Beyond (1 l/16, 1 l/16,11/16) the eigenvector, which falls off exponentially, is not sufficiently 
accurate to warrant extrapolation. 
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to lying on the principal diagonal of the cube and to belonging to the subset of 
points common to all meshes (which are taken to be submultiples of h, = Q). An 
approximation to a fine mesh value #(v, II,), where v is a fine mesh point lying 
outside this common subset, may be obtained by first interpolating approxima- 
tions to #(v, h) on the coarse mesh sizes h, and then extrapolating. 

The interpolation operator 

acting on the eigenvector #(u, h) belonging to mesh size h approximates S&V, h) to 
second order in h. r, is the forwards-difference operator (21). The vector ah s 
v - u linking the fine mesh point v with a particular neighboring coarse mesh point 
u is defined in Fig. 7. #(v, h) is approximated by a linear combination of thirteen 

u2 
I x 

x 

x 

x 

x 

. x 

x 

x 

x 

.X 

x x 

. x * x . 

Ul 

FIG. 7. Fine mesh points with ht = $6 (dots) and coarse mesh points with h = $5 (crosses) 
lying on a plane of the cube with uII = const and showing how a point Q in a fine mesh lattice 
at which an interpolated function value is sought may be related to a point P in a coarser mesh 
lattice (Section 4B). The vector e in Eq. (32) has, in this example, the value (-3, -Q, 0) (as may 
be found from a = (v - u)/h where v  and u are the position vectors of Q and P). The interpolated 
function value is expressed as a linear combination of the function values at P and points in 
J(P) using the coefficients of Table XI with this particular value of a. When Q is adjacent to an 
in-line face the associated point P is chosen to be adjacent but one so as to avoid references to 
values at points on the in-line face where the eigenvector is not represented. 
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neighboring eigenvector values I&U, h), the coefficients of which are defined in 
Table XI. The similarity of the interpolation operator (32) to the operator K, 
Eq. (20), helps simplify the programming of the interpolation process, especially 
at the boundaries of the tetrahedron, where similar procedures are adopted to 
those described in Appendix B. Equation (32) is a generalization of Newton’s 

TABLE XI 

The 13 Interpolation Coefficients Presented as the Sums of Contributions from Different Powers 
of the r Operators in (32) 

Mesh point 
reference 
number r 

Interpolation coefficients 

Constant term Linear terms Quadratic terms 

1 
2 

3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

a The numbering of points corresponds to that in Table VIII. 

interpolation rule [36] to three dimensions. Since the interpolated approximation 
is correct to only second order in h, it is only permissible to extrapolate a sequence 
of at most three eigenvectors. Thus, for example, in the S state problem, the eigen- 
vectors belonging to h = A, &-, and & were extrapolated to /.Q = & and the 
approximate eigenvector obtained gave a Rayleigh quotient with three figures 
correct. In the central and tensor problem, extrapolating from h = %+ and h = 2s 
to hf = & gave a Rayleigh quotient -9.43 compared with the actual eigenvalue 
-9.87 (see Table II) and interpolating from h = & to hf = & gave a Rayleigh 
quotient of -8.70 compared with -8.92. 
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5. SUCCESSIVE OVERRELAXATION 

The method used to solve the inhomogeneous equations (7) in the central and 
tensor problem and similar equations in the S state problem is successive over- 
relaxation by lines [33], abbreviated SOR by lines or simply SOR. Because of 
permutation symmetry the equations need only be solved over one of the six 
tetrahedra making up the cube, as is described in Appendix B. 

A single step of the process consists of updating simultaneously a line of data 
comprising a number of wavefunction values. In the S state problem a “line” 
consists of the wavefunction values at mesh points on the (j, k)th line of the cube 
contained within the basic tetrahedron. In the central and tensor problem a line 
consists of the nine wavefunction components belonging to a particular mesh point. 

A single step of the updating process in the central and tensor problem may be 
described as follows. The subset of nine equations of (7) pertaining to P may be 
written in block notation as 

; HPP* +P ’ - h’w9P 4GP = WWJP , (33) 

where $ is the latest approximation to #,+1 in the current SOR cycle, where 
Hpp, is a 9 x 9 block and #p, a nine-rowed column vector, and where the sum over 
P’ includes P as well as the neighboring points J(P) of Table VIII. At the Pth 
step of the (k + 1)th iteration the points P’ preceding P in the ordering, P’ < P, 
have updated values @+l’, whereas P and the points P’ > P have values J@ not 
yet updated. The nine components of the vector I&‘+” updating #p are obtained by 
solving the nine equations (33) simultaneously for an intermediate result #b*+“‘2)), 
and then by overcorrecting this result by an amount proportional to the difference 
(*F+‘1’2)) - $~j?‘). The equations defining #L’+” are 

c Hpp#~) + Bp#~(““)) + c H,,$$’ = (PN+,)~ , 
P’<P P’>P 

(34) 

and 

* (pk+u = #'p"' + ,(@+wz)) - @'), (35) 

where 
BP 3 Hpp - A$IN)~, (36) 

is a 9 x 9 block, and where the overrelaxation parameter w  satisfies 1 < w  < 2. 
In solving (34) for I,$.‘+(~‘~)) all terms not involving ~$?+(l/~)) are transferred to the 
right-hand side which is then left-multiplied by the inverse of BP . This process, in 
which the new values I#?+~) overwrite the old values #j?‘, is described as progressive 
in that each step of the process uses the latest information. The (k + 1)th iteration, 

581/22/1-5 
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comprising a number of such individual steps, is completed when all the wave- 
function values at all the mesh points within the tetrahedron and outside the hard 
core have been updated. 

A. Convergence of Successive Overrelaxation 

By dividing the matrix H - h’pN into its diagonal part D 3 (BP) and its upper 
and lower triangular parts U and L SOR may be described by the equation 

#‘“+I’ = C#“Jd’ + (L + &D)-1 pN$n , (37) 

where the iteration matrix [33] 

C = 1 - w(D + cd)-l (H - h’ pN). (38) 

Successive difference vectors d(“) = t,!P) - #(“-l) are related by 

d(k) = C&k-l = . . . = C&l&l (39) 

If the eigenvalue estimate h’ is taken less than h, the fundamental eigenvalue, 
then H - X’pN is positive definite (as well as being symmetric) and convergence of 
SOR is guaranteed [33, 391 (with 1 < w  < 2; in fact a satisfactory value of w  N 1.7 
was found experimentally). Under these conditions it follows from (37-39) (see 
[39, Eqs. (3.56) and (3.57)]) that 

S(k) 3 &“” (H - x’pN) d(k), (40) 

is monotonic decreasing, and that the relation 

fj'k-1' - S'"' = ((2/w) _ 1)&k" DA(k), (41) 

holds, where d(k) E d(k) _ d(k-1) (and where, in the case of SOR reduced to a 
tetrahedron, the sum over points P implied in the scalar products in (40) and (41) 
contains a weight factor w(P) defined in Appendix B). In running the program the 
monotonic property of the St”) and the agreement of both sides of Eq. (41) were 
confirmed. This tests that the program reproduces the transpose and permutation 
symmetries of H, Eqs. (24) and (25), on which (41) depends (in particular, testing 
the detailed logic needed to reduce the problem to the tetrahedron). 

B. The Acceleration Device 

With h’ only slightly less than h it is expected that the convergence will be slow 
since in this case the dominant eigenvalue of C is close to 1 (and, when x’ = h, is 
actually equal to 1 as can be seen by applying (38) to the fundamental eigenvector 
# which is now the dominant eigenvector of C). It was found in both the S state 
and central and tensor problems that although the convergence was indeed extre- 
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mely slow in this case, it was also quite smooth in the sense that the ratio of 
successive difference vector norms 

r(k) _ II d’“’ II 
=/Id(k-l) k = 2, 3,..., (42) 

(defining the norm I/C) I/ to be the sum of the absolute values of the elements of 
d(“)) eventually settled down to a constant value. When this happened it was found 
that the simple acceleration device due to Lyusternik [33] in which 

(43) 

TABLE XII 

Output from Computations on h = s 1 in the S State Problem Indicating the Convergence of 
Successive SOR Iterations and the Effect of the Acceleration Device (applied after Iteration 

k = 90) 

1 0.367(l) 
2 0.276( 1) 
3 0.234(l) 
4 0.216(l) 
5 0.197(l) 

36 ’ 0.508(0) 
37 0.496(O) 
38 0.486(O) 
39 0.475(O) 
40 0.465(O) 

87 0.234(O) 
88 0.234(O) 
89 0.229(O) 
90 0.227(O) 

91 0.405(- 10) 
92 0.392(-10) 
93 0.315(-10) 

0.62565533(-g) 
0.96964822(O) 
0.80190997(O) 

0.409-11) 
0.486(-11) 
0.253(-11) 

- 
0.85673884(O) 
0.94706233(O) 
0.10107975(1) 
0.99735135(O) 

0.99969552(O) 
0.99970941(O) 
0.99970602(O) 
0.99970153(O) 
0.99970642(O) 

0.99970509(O) 
0.99970509(O) 
0.99970509(O) 
0.99970509(O) 

0.198(O) 
0.154(O) 
0.136(O) 
0.121(O) 
0.109(O) 

0.225(- 1) 
0.220(-l) 
0.215(-l) 
0.211(-l) 
0.206( - 1) 

0.104(- 1) 
0.103(-l) 
0.101(-l) 
0.100-I) 

Acceleration applied 

D The closeness of the limit of the r lx) to 1 is connected with the closeness of the chosen eigen- 
value estimate h’ = -21.1 to the fundamental eigenvalue in this case, h = -21.04812. 
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replaces z+P+~), often improved the accuracy. This is illustrated spectacularly (but 
untypically) in Table XII for a case in which, by direct calculation of the eigen- 
values of the iteration matrix C, it was found that the converged ratio was equal to 
the dominant eigenvalue of C (i.e., 0.99970509) and that the subdominant eigen- 
values were all less in magnitude than about 0.7. Under these conditions (39) 
implies that the subdominant eigenvector components of 8”) will be quickly 
damped out with the result that the error in I,@“) consists largely of the dominant 
component and the effect of (43) is to almost completely eliminate this. The accele- 
ration device seems to work in this way in the examples given in Tables VI and VII 
where successive applications reduce the estimated total number of iterations by 
factors of from three to four. 

C. The Zero Right-Hand Side Procedure 

In the zero RHS procedure, Eq. (9), SOR will not ultimately converge since the 
matrix H - X,pN is not exactly singular [33, p. 2401 (the matrix is in fact slightly 
negative because the upper bound A, is necessarily greater than the fundamental 
eigenvalue A). However the initial convergence of the process will be unaffected 
because in 

+ 
(k+l) 
n+1 = C$$ 

* 
(k) - CL@@,) + OJL)-~ (H - X,pN) ~~~,“11 

1 t,fr;;: - a@(A) + w,)-~ (H - hpN) &fjtcll 

- @(L) + u-W1 (A - U pN#t$ 

t 4D(& + wL1-l (A - A,) pN(D(4 + uL)-~(H - ApN) #tit/~+... , 

(using Eq. (38), with 0(X,), D(X) denoting the diagonal parts of H - h,pN, 
H - ApN, respectively) the terms associated with the departure from singularity, 
viz, the third, fourth, etc. terms on the right-hand side of the last equation, will be 
initially too small to be detected. This follows from the quadratic property of the 
Rayleigh quotient 

which shows that at k = 0 the third term in question is of second order in the 
error $$ - 4, the fourth term is of third order, etc. and so these terms are 
negligible in comparison with the first-order second term. When the accuracy of 
#j$ becomes such that the second and third terms are of comparable magnitude 
the process stops converging. This is indicated during the running of the program 
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by successive rtk), Eq. (42), becoming greater than one. Therefore this phenomenon 
provides a natural indicator of when to terminate the current cycle of inner itera- 
tions and reevaluate the Rayleigh quotient. 

D. Time and Space Requirements 

The total number of SOR iterations needed to generate solutions of comparable 
accuracy on different mesh sizes was found to increase gradually with decreasing 
mesh size, despite the use of better initial approximations on finer meshes obtained 
by extrapolation (e.g., in the S state problem on h = &, 8, and &, about 170, 
200, and 220 SOR iterations were needed and in the central and tensor problem on 
h = &, &, and & about 170, 180, and 280). The central and peripheral processing 
times involved were found to increase in somewhat greater proportion than the 
inverse cube of the mesh size, the total central processing time in the central and 
tensor calculation amounting to fourteen hours on a CDC CYBER 72. The peri- 
pheral processing time, almost completely connected with reading from a CDC 
844 disc the coefficient data associated with the Hpp* in Eq. (34), was found to be 
about equal to the central processing time and to be almost concurrent with it. The 
wavefunction data connected with the #P, in Eq. (34) was read sequentially from 
an input file into an area of central memory where three adjacent planes were 
stored simultaneously and from which updated data could be written to an output 
file, the roles of the two flies being interchanged at the completion of each iteration. 
The central memory storage connected with this wave function data (about 100 K 
on h = &) could be reduced to a small amount proportional to h-l (rather than to 
k2) by using random access to store and transfer adjacent geometrical lines of 
data rather than adjacent planes. During the running of the program it was found 
essential to use an on-line display to study the convergence of successive rck), 
Eq. (42), and successive h, , Eq. (8) and also to use sense switches to control the 
sequence of inner and outer iterations and to apply or recover from the acceleration 
device. 

APPENDIX A. DEFINITIONS OF VARIOUS QUANTITIES 

In the following list of definitions 4’ stands for d4/du. Quantities not explicitly 
defined may be obtained by cyclic symmetry. (For example, cos e2 may be obtained 
from cos 0,). 

P = r22r21r125Ud vW3 ~‘W49 

cos 8, = -4 + 4 + rf2 
2rd12 ’ 
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R2 = ri3 -I- & + rt2 , 

A = tKr23 + r31 + r12)(--rz3 + r31 + r12) 

(r23 - rgl + r12>(r2, + rsl - r12)11/2, 

cos A = 4.3112A/R2, 

F = 3-l12(ri3 + r& - 2rf2), 

G = ri3 - r$ , 

2 2 

u1 = - r31 - r12 
2 

+ r12 - ri3 
2 

r23 - ril 
r23 r31 

+ 2 
r12 

P&l = 2+2“#‘3’(3 + cos 81 - cos e2 - cos e3)/h’, 

PlT23 = %‘(cos 4 - I>, 

pli = 16.3-312R2uilc#i’, i= 1,2,3, 

Ga, + 442 - -? - -!I- + ‘) 
( r12 r23 r31 

pm13 = 8~‘~ 1 Go, + 4A2 (+ $ + $ + &) 1 /$31, 

pm,, = -8.3-1/2 
I 
Fu, + 4.31/2A2 + 2 + $)j/& 

i 

pm,, = -8.3-lJ2 
I 
Fu, + 4.WA2 - .$- - $ 

i )I/ 
$2f, 

pm,, = -8.3W12 
! 
Fu, + 4.311242 - -!- 

( rz3 + $)1/+3” 

No = R4(1/3 + sin2 A), Nl = 4/3FR2, 

N2 = 4/3GR2, N3 = 4/3(G2 - F2), N4 = 8/3FG, 

N5 = R4(2/3 - 219 sin2 A), do = No, 4 = NI , 

4 = N2 , d3 = +N4 , 4 = 4W.s + N3), 

d, = &(Ns - N3). 
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APPENDIX B. SYMMETRY REDUCTIONS IN THE NUMERICAL PROBLEM 

This appendix describes how the transpose and permutation symmetries, 
Eqs. (24) and (25), may be exploited to cut down the size of the relaxation problem, 
using the nine-state central and tensor problem as an example. 

1. Permutation Symmetry 

Permutation symmetry may be used to confine the solution of the inhomogeneous 
equations (7,33) (or homogeneous equations (9) in the zero RHS scheme) to one 
of the six tetrahedra making up the cube, thereby reducing storage space and 
computing time by a factor of about six. The basic tetrahedron T is taken to be the 
one containing the points P(i, j, k) with k < i <j. The cube of mesh points may 
be considered to be the union of disjoint sets Y(P), P in T, containing the points 
Pi = Rip, i = 1, 2 ,..., 6, which transform into one another under the action of the 
six permutation operators R, = e, R, = (13), R, = (123), R, = (23), R, = (132), 
and R, = (12). Y(P) contains w  = w(P) points lying in the plane through P 
perpendicular to the principal diagonal of the cube (the line U, = u2 = ut in 
Fig. 1) where w  = 6 if none of the indices i, j, and k are equal, w  = 3, if a pair of 
indices are equal, and w  = 1 if all of the indices are equal. The values of a sym- 
metric vector # at the points Pi are related by 

#(Pi) = R,+(P), i = 1, 2,..., 6, (B1.1) 

where #(P) and #(Pi) are nine component vectors and Ri is a 9 x 9 permutation 
matrix representing the permutation operator Ri and defined in Section 2B. 

The permutation symmetry of H, Eq. (25), implies that if a symmetric vector 
satisfying (Bl. 1) at all points is substituted into the inhomogeneous equations (33), 
then the w(block) equations belonging to points in a particular set Y are all 
identical with one another (after factors of permutation matrices are cancelled out 
on both sides of each equation). However, the symmetry of the vector is not 
preserved in an SOR process where individual lines of data belonging to individual 
points in Y(each line containing nine wavefunction values) are updated separately 
from one another as individual steps in a process including all the internal points 
of the cube outside the hard core. This is because of the progressive property of 
SOR that the result of an individual step depends on the ordering of previous steps. 
But the permutation symmetry of the vector is preserved in an SOR process where 
all the wavefunction values at all the points in a set Y (forming an extended 
“line”) are updated simultaneously in a single step, and so treated equally with 
respect to permutation symmetry. In this case the identity of the w  equations 
implies that the relaxation problem separates into six identical subproblems of 
SOR by lines over a tetrahedron as defined in Section 5, Eqs. (34-36). 
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The subproblem connected with T may be made self-contained in the sense of 
containing no references to points outside T. Where the SOR equation (34) 
belonging to a particular point P in T contains couplings to points P’ in M(P) 
outside T the contribution of such points may be included by reflecting them back 
into points P” within T and making appropriate modifications to the coefficients 
Hw . Dividing N(P) into the set 9(P) of points P” internal to T and the set g(P) 
of points P’ external to T, it is found that eight different cases of such coupling 
to points in b(P) occur (depending on the position of P with respect to the boundary 
of T) and that, in all cases where B(P) is not empty, the points in b(P) reflect back 
into J(P) [40]. For example, if P = (j, j, k), P’ = (j + 1, j, k), and 
P” = (j, j + 1, k) (corresponding to r = 13, 1, and 2 in Table VIII, respectively), 
then Hpp may be replaced by Hpp” + Hpp, R, , and reference to P’ omitted. 

In the resulting modified finite difference matrix HM transpose symmetry is not 
preserved near the boundaries of the tetrahedron. A transpose symmetric matrix 
w  H”S for use in the subproblem may be obtained from HM by means of two 
operations (not affecting SOR): First, left-multiply both sides of the matrix 
equation defining the eigenvalue-eigenvector subproblem by a diagonal matrix 
whose elements pertaining to P are all equal to w(P); second, replace 4 on both 
sides by S#( =#) where the projector S( =S2) is a block diagonal, transpose sym- 
metric, and singular matrix whose block pertaining to P is Cl Ri/C: 1, primed 
summation restricting i such that Ri P = P. That w  H”S is symmetric can be 
demonstrated by considering particular cases. For example, with P, P’, and P” 
defined as above, the equality of (w HYS)(P, P”) = w(P) H”(P, P”) S(P”) = 
3 . (H(P, P”) + H(P, P’) R,) * 1 with [(w H%S)(P”, P)B = S(P)(H(P”, P))’ w(P”) 
= +(l + R,) . H(P, P”) * 6 = 3(H(P, P”) + R, H(P, P”)) is conditional upon the 
equality of H(P, P’) R, with R, H(P, P”), and this follows from (25) by writing 
H(P, P’) R, = H(R, P, R, P”) R, = (RB H(P, P”) R;l) R, = R, H(P, P”). The sin- 
gularity connected with S may be removed by changing to a basis that diagonalizes 
S to a matrix of ones and zeros (with w  HM simultaneously undergoing the appro- 
priate similarity transformation) and by omitting those equations connected with 
the zeros. 

Some of the above points can be illustrated with the simple two-dimensional 
problem of Fig. 8 defined by the four inhomogeneous equations 

pertaining to the square. Assuming permutation symmetry about the main diagonal 
of the square, $I may be replaced by Rz,b4 in the last three equations (where if #i 
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FIG. 8. Twodimensional problem with permutation symmetry about the line through points 
2 and 3. 

has a number of components, either symmetric or antisymmetric, then R is a 
permutation matrix) thereby defining a subproblem with three modified equations 

pertaining to the lower triangle. The matrix 

22 * :(l + RI 
,2 . +(l + R) 

* +(I + R) 
zs; . $(I + R) 

H24 + HalR 
WIT’% = Haa + f&R > 

2H42 - 8U + R) 2H4, * H1 + RI WL + &R) 
is transpose symmetric, e.g., (2Hd2 - *(I + R))= = H,, + RH,( = H24 + R(R-1 
H,,R) = H24 + Hz& 

For a group-theoretical analysis of symmetry reductions in numerical problems 
(see [30]). 

2. Transpose Symmetry 

Transpose symmetry makes it possible to avoid using data from the lower half 
of H thereby roughly halving the total peripheral storage and processing time which 
is almost completely connected with handling the coefficient data. The coefficient 
blocks H,+ needed at the Pth step of SOR, Eq. (34), are read into central memory 
at that step, and the wavefunction data needed is made available by accessing an 
array containing three adjacent planes of I/. It is not necessary to compute all the 
contributions HP+ #P, to eq. (34) at the Pth step; those contributions from points 
P’ < P may be computed at the (P’)th steps as (Hp,p)T &!!+l) (as soon as $Pl has 
been updated), using transpose symmetry, Eq. (24). If these contributions are 
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successively stored in the Pth location of an auxiliary vector 17 then Eq. (34) may 
be replaced by 

TP + &@+(l’z)) + c HPP’@) = (pN&J, , 
P'>P 

where 

As soon as $p has been updated its contribution, 

(B2.1) 

(B2.2) 

(B2.3) 

to the 71~’ associated with the steps P’ > P may be computed. It is clear that at 
each step of an SOR procedure incorporating this symmetry saving the arithmetic 
involved, i.e., that connected with Eqs. (B2.1) and (B.2.3), uses data only from the 
upper half of H. 
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